当前位置:首页 > 职场资讯 > 行业发展

初中数学教案

时间:2020-01-27 10:17:57

  初中数学教案《相交线》

  教学目标:

  1、在熟悉平面内两条直线相交的各种情况的基础上,理解邻补角、对顶角的概念,并能在各种情形下识别之;

  2、掌握对顶角的性质及其推导过程,并能运用之进行有关的简单计算和推理;

  3、进一步提高识图能力,初步渗透推理论证的思想及书写格式,感受数学的严谨。

  教学重点:

  对顶角的性质及应用。

  教学难点:

  各组角的分类。

  教具学具:每个学生课前做出由两个木条构成的相交线模型。

  教学过程:

  (一)创设情境,感知学习目标

  我们走过的马路,有些是相交的、有些是平行的;黑板边缘所在的直线也有相交或平行(示意黑板)两种情况。列举你生活中见到的相交线和平行线的实例。

  本章的主要内容就是要学习和研究两条直线相交和平行的规律。

  先看相交的情况(教师演示教具,学生操作自己制作的相交线模型),这两条直线(指示教具)是相交的,通过绕交点转动教具可以发现它们所交角的大小可以不同。但不论相交的情况怎样,两条相交直线构成的交角的个数及它们之间的关系是一定的,这就是本章第一节的内容:

  5.1.1相交线 (板出课题)

  [说明:从学生日常生活经验中发现问题、提出问题,引导学生初步地、概括地了解新的学习任务,为整节课的学习活动提供动力和规划方向。但教材强调了两条直线相交的情况与交角的大小有关,却与本节对顶角、邻补角的内容难以有机地过渡,故通过“不论相交的情况怎样,两条相交线构成的交角的个数及它们之间的关系是一定的”一句,自然引出本节课题。]

  (二)设问启发、逐步领会新知识

  问题1、任意转动你手中的两条相交直线,观察它们构成了哪几个角?

  问题2、如果任意变化两条相交线的位置,第二类中各组角之间的关系会改变吗?为什么?

  根据上述规律,回答:

  (1)怎样给像<1与<3、<2与<4这样的一对角命名并下定义?

  (2)对顶角有什么性质?写出你的推理过程。

  [说明:在几何推理的起步阶段,严格符号语言表达的推理过程是不要求学生掌握的,这里可由学生回答,教师板出推理过程。]

  问题3:如果任意变化两条相交线的位置,第一类中各组角之间的关系会改变吗?为什么?利用以前所学过的知识,你可以给它们怎样命名?(邻补角)

  (1)给邻补角下定义:

  (2)怎样理解“互为”的意思?

  (3)画图说明,还有没有其他情况的邻补角?

  [说明:根据学生知识的发生、形成过程,层层设计富有启发性的数学问题,引导学生的思维步步深入,完成从已知状态到目标状态的转化。这里数学问题的设计与提出,为将静的数学知识转化为学生动的数学活动提供了有力的杠杆,切实解决了学生如何思维、如何活动的问题,保证了教学过程中学生主体性的贯彻落实。以下对顶角的教学设计也是这样。]

  (三)回顾整理,明确数学结论

  1、用自己的话概述刚才学习的过程和结论。

  2、反思刚才的学习过程,你有什么问题可以提出?比如,邻补角和对顶角的构成有哪些共同的规律?

  [说明:由于第二环节中学生的认识活动是在教师引导下相对独立的完成的,其间不会一帆风顺,有岔道,也会有停顿,本环节的目的是在教师引导下帮助学生理顺思路、明确结论。]

  (四)练习反馈,强化应用新知识

  1、例题

  题目:见人教版教材《数学》七年级下册,第5页。

  分析:(1)∠1与∠2、∠3、∠4分别是什么关系?

  (2)已知∠1=400,分别根据上述关系能否求出它们的大小?

  解:(略)

  思考1:∠4是否还可以有另外的求法?

  思考2: 本例中,若∠1=90°,求∠2、∠3、∠4的度数。 思考:两条直线相交得到四个角,其中一个角是90°,其余各角是多少度?为什么?

  强调:解决这一类问题关键是正确判断各角之间的关系,然后反复利用对顶角、补角等性质进行计算。

  [说明:通过两个问题引导学生分析题目特征、探索解题思路,这是例题教学的关键,以逐步培养学生形成良好的审题、解题习惯;在例题之后,紧接着给出两个与例题内容相关的练习,既深化了学生对例题的认识,又恰当地处理了本节课后的练习的第4问;解题之后反思解题过程、概括思想方法,是培养学生解题能力的重要一环,这里强调的内容使本例题的教学得到升华,超出了讲一个题目本身的意义。]

  2、练习

  教材第5页练习。

  具体过程(略)。

  (说明:对练习的结果教师要引导学生尽量独立地予以评价,对从中暴露出的问题和错误要及时矫正,进行补偿性学习。)

  (五)总结概括、深化提高学生的理解

  1、通过本课的学习,你有哪些收获和认识?还有哪些困惑与不明白的问题?

  2、教师总结:平面上两条直线的位置关系有相交、平行两种,本节重点学习了两条相交直线所成的角的情况。两条直线相交得到四个角,其中有一个公共顶点,没有公共边的两个角是互为对项角;有一个公共顶点,且有一条公共边的两个角是互为邻补角。对顶角相等是对顶角的一条重要性质,它是由“同角的补角相等”这一性质推出来的。利用它可以进行许多运算。(说明:这里可由教师讲解,也可引导学生复述)。

  注意:邻补角是具有特殊位置关系的两个互补的角,它们具有补角的所有性质。对顶角也可看成是两边互为反向延长线的两个角。对顶角的性质及其运用是本节的重点,它同补角、余角的性质一样在今后的运算或推理中会经常用到,运用的关键是首先判断好两个角之间的关系。

  [说明:这一环节类似于一般的课堂总结,但它不应是课堂内容的简单重复,应通过引导学生回顾、总结课堂教学过程,使数学知识系统化、数学思想方法明确化,达到深化、提高学生的认识水平、促进学生科学认知结构形成的目的。这一环节比第三环节有更高的抽象度和概括化水平。]

  初中数学教案《菱形》

  重难点分析

  本节的重点是菱形的性质和判定定理。菱形是在平行四边形的前提下定义的,首先她是平行四边形,但它是非凡的平行四边形,非凡之处就是“有一组邻边相等”,因而就增加了一些非凡的性质和不同于平行四边形的判定方法。菱形的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。

  本节的难点是菱形性质的灵活应用。由于菱形是非凡的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己独特的性质。假如得到一个平行四边形是菱形,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,经常让许多学生手足无措,教师在教学过程中应给予足够重视。

  教法建议

  根据本节内容的特点和与平行四边形的关系,建议教师在教学过程中注重以下问题:

  1.菱形的知识,学生在小学时接触过一些,可由小学学过的知识作为引入。

  2.菱形在现实中的实例较多,在讲解菱形的性质和判定时,教师可自行预备或由学生预备一些生活实例来进行判别应用了哪些性质和判定,既增加了学生的参与感又巩固了所学的知识.

  3. 假如条件答应,教师在讲授这节内容前,可指导学生按照教材148页图433所示,制作一个平行四边形作为教学过程中的道具,既增强了学生的动手能力和参与感,有在教学中有切实的体例,使学生对知识的把握更轻松些.

  4. 在对性质的讲解中,教师可将学生分成若干组,每个学生分别对事先预备后的图形进行边、角、对角线的测量,然后在组内进行整理、归纳.

  5. 由于菱形和菱形的性质定理证实比较简单,教师可引导学生分析思路,由学生来进行具体的证实.

  6.在菱形性质应用讲解中,为便于理解把握,教师要注重题目的层次安排。

  一、教学目标

  1.把握菱形概念,知道菱形与平行四边形的关系.

  2.把握菱形的性质.

  3.通过运用菱形知识解决具体问题,提高分析能力和观察能力.

  4.通过教具的演示培养学生的学习爱好.

  5.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.

  6.通过菱形性质的学习,体会菱形的图形美.

  二、教法设计

  观察分析讨论相结合的方法

  三、重点·难点·疑点及解决办法

  1.教学重点:菱形的性质定理.

  2.教学难点:把菱形的性质和直角三角形的知识综合应用.

  3.疑点:菱形与矩形的性质的区别.

  四、课时安排

  1课时

  五、教具学具预备

  教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具

  六、师生互动活动设计

  教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨

  七、教学步骤

  复习提问

  1.什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?

  2.矩形中对角线与大边的夹角为 ,求小边所对的两条对角线的夹角.

  3.矩形的一个角的平分线把较长的边分成 、 ,求矩形的周长.

  引入新课

  我们已经学习了一种非凡的平行四边形——矩形,其实还有另外的非凡平行四边形,这时可将事先按课本中图4-38做成的一个短边也可以活动的教具进行演示,如图,改变平行四边形的边,使之一组邻进相等,引出菱形概念.

  讲解新课

  1.菱形定义:有一组邻边相等的平行四边形叫做菱形.

  讲解这个定义时,要抓住概念的本质,应突出两条:

  (1)强调菱形是平行四边形.